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Outline

DER-CAM OVERVIEW
O introduction to the Distributed Energy Resources )
Customer Adoption Model (DER-CAM)

O three types of analysis application (commercialization):
(single building/microgrid, policy, real-time control)

O results (new and old)
(CERTS Microgrid biz case, ZNEB, EV charging, valuing PQR)

MICROGRIDS
O definition, example, and philosophy
MISCELLANEA
O DER-CAM math & specifying equipment options
O demand-side/energy efficiency measures
O zero net energy buildings
O valuing power quality and reliability
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(=) DER-CAM Concept
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CA Nursing Home Results

(cost min. cases with eff./beh., ZNEB, and subsidies,

run 1
;

4:all  5:same
R“NS > techs+eff as 4
+ZNEB +subhs
100 kW recip. engine w/HX (kW)
abs. chiller (kW.e displaced) 0
solar thermal (kW.t) / 0 43 3952 _—%H
PV (KW) na o 517 2408f 3162
electric storage (k\Wh) 0 2082 ON 15
thermal storage (kWh 0 47 9897
3 al co d) and percentage q
total (incl. annualized equip. cost) 964 7211 910
savings cmprd. to do-nothing (% n/a 25 6 -85 14
d c elrnelrg O O
electricity 5.8 2.1 2.4 3.4 2.3
NG 5.7 8.9 10 0.004 7.5

electricit

annual CO, emissions (t/a),
emissions

energy sales (GWh)

|_n/a_| na_| nal 34 49

does not contain CO., offset due to electr. sales

n/a

3989

3058

savings cmprd. to do-nothing (%)

n/a

23

U)W all techs. considered + efficiency/behavior

run 3 all techs. considered + subsidies for PV (60%) & storage (70%)

do nothing (buy gas & electricity at standard tariffs)

S[aR“Y all techs.. considered + efficiency/behavior + ZNEB constraint

("s3] all techno. considered + efficiency/behavior + ZNEB constraint + subsidies

~

Years of \V rid-Class
c1ence

CHP appears in solution

ZNE reached at a cost
increase of approx. 85%

utilizing a subsidy for
PV and storage of
M$13, or a CO, emission
reduction cost of $259
/tCO, compared to a
$18/tCO, market price

subsidies:
PV = $4005/kwW
E. storage = $133/kWh
T. storage = $50/kWh

——— Environmental Energy Technologies DiviSiOn

* constant grid marginal CO2 emission rate =

513 g/kWh
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k,f 7 Electricity Balance at N.H.

WLV (run 5: eff. + ZNE + PV/storage subs.)
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(=) Cost-Carbon Frontier
\ WY ~

D (no ZNE constraint)

.............................................. carbon 100% .
i i =8 multi-objective frontier
2'5 t ........................................ E ....... 4: COStS 60%’ .............. efﬁciency measures .......................... E
_ carbon 40%
m. | 1 | | I I
2-0 e . : :

TEJ 3: costs 80%, - 2tinvest costs 100%,

B o CArbona0% N LN ~ carbon 20% | carbon 0% ,;

S - | | : : ; ; :
1.0 B e e i3:cost580%’ ............... ~ K — T E
0.5 carbon 20% I 1: do-

"~ |*Using current technology costs i Jll * 100 kW reciprocating engines
*No energy sales to the macrogrid are considered inthes 780 kW absorption chillers
0.0 - 1 g 1 ; | | o ° 13427 kWh of electric storage
* 11239 kWh of heat storage
0 500 1000 1500 2000 2500 300( 2709 kw (20 800 m?) of PV
COZ emissions (t/a) * 3152 kW (6 300m?) of solar therlmal

' Years of World-Class
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O electric vehicle interactions with buildings quite unexplored
O DER-CAM a useful tool to understand how EVs

might optimally be used by microgrids
O to explore how would EVs be used and what their value is
O developed capability to optimally operate electrical storage
O EV interactions cannot be considered in isolation
O representation of constraints very complex
(battery degradation, driving behavior, contracts, ...)
O confused legal and economic institutions
O currently exploring two types of EV effects:
® employee vehicles parked for work day at buildings
©® value of used EV batteries as stationary storage

Environmental Energy Technologies DiviSiOn s 11




K‘ Preliminary Results

AR 3

* PG&E Al buildings with
peak demand 200-500 kW

e dmd. chrg. > $10/kW/mo.

* connection payment
200 S/kWh/a

e stationary storage at

60 S/kWh investment cost
* energy exchange price

5 S/kWh

* net annual zero transfer

Time of connection 9:00

Time of disconnection 18:00

SOC in [%] 73%

SOC out [%] NONE

Installed capacity of 50 kWh mobile storage
translates into about 5 PHEVs with 16 kWh name
plate battery capacity each

Years of World-Class

Science
1931-2000

(batteries and EVs at small S.F. office blg
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CA Com. Sector Demand

Sample ~35% of

SDGE SMUD FZ6 LADWP

California (statewide)

misc 1% PGE FZ2 5% FZ11-12
9%

OTHER
FZ14-15
3%

0

16% 15%

CEUS study (limited statewide)
excluded sites
studied sites (100kW < site < 5 MW)
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assumed = 2020 cost savings
>. | capacity o midsized bldgs:
= | factor of E — 0.19B$%/a
g 86% o P
% » % E \é?ztd r(t:ag'ority
L p ed
O O [ technologies are
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DER-CAM

Commercialization

GAMS doesn’t offer a good path to commercialization:
academic, cryptic text interface, expensive, ...

Client App CLIENT APPS. .
Customers e Browser or Other Client App Access
Client App Service Creation
' I < — 8 (Proprietary?) User interface
SOftwa e ::far ® Business/technical logic
— (secure) = Analysis tools & visualization
aS a (J OSlsoft. ] = User management / access control
1 & Other
Service Services job calls * f results
I |
model is , e
one '% ML based interface
. e DER-CAM (GAMS & solvers)
SOI UtIOn . Casual User ® Open access software service

Web Access * Secure Berkeley Lab server

= Optimization service only
= Text-based job control

Environmental Energy Technologies DiviSion s 15
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What next?

ACTIVE
O battery evaluation web site for large CA C&l customers
O adding electric vehicle interactions (V2G & V2M)
O dynamic control (Energy Manager)
O residential and small commercial DC systems

WISH LIST
O energy efficiency
O commercialization as SaaS
O more on PQR (DC systems)
O more on EV’s (joint optimization)
O applied dynamic control
O Uncertainty

O links to building energy simulation

) ' , Environmental Energy Technologies DiviSion = 16
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(=]  Whatis a Microgrid?

‘

A controlled grouping of energy (including

electricity) sources and sinks that is connected
to the macrogrid but can function
iIndependently of it.

main benefits to developers of microgrids:
= pushing efficiency limits by heat recovery (CHP)
= providing heterogeneous power quality and reliability (PQR)

= creating a more favorable environment for efficiency and
small-scale renewables and/or protecting the grid from them

other societal benefits include:

= avoiding macrogrid investments

* hardening of supply

= curbing generator market power, etc.
= |oad leveling

Environmental Energy Technologies DiviSion s 18




( = \ Sendai Project Plan

—_——
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Sakura at Sendai Microgrid
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' Years of World-Class
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L)) Sendai Project Pictures
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end-use reliability
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Dispersed Vision

ENERGY ISS‘ON, (distributed control & heterogeneous service )

end-use reliability
(nines)

1
(3 ms/yr) 10 — | PQR = power quality
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(30 ms/yr) 9 — _ Yy 3
T(os ms/yr) 8 — i %
7 v o [&
2 @3syn 7 - 23 |ea
é | ¢ g/ ®
= (30sin 6 — dispersed e o
= resources = o
T Eminy) 5 — / heterogeneous g2
el PQR g‘§
c o
= (Thriyr) 4 — = =
E (Qhrstyn) 3 — ) ;3_’%
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0 l | 1 —>
1900 1950 2000 2050

year
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—— total societal cost of reliability =
—— cost of unreliability +
—— cost of reliability provision
-----= total cost with microgrids =
costof | - - cost of unreliability with microgridg—=
urﬁf'eli,a bility -----= cost of reliability provision with mictotabeost of
> B, _ _ | reliability
~ possible effect of microgrids
.5 ~0,....
o ........
O I '.'......... “““ 2e®
".'.... — "l--....|......-- I -
..wst.g'f... I I on®® >
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Loads Disaggregated by

PQR Requirements
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DER-CAM
Modeling Issues

Years of World-Class
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) DER-CAM Description

MMISSION

O Mixed Integer Linear Program (MILP), written in the
General Algebraic Modeling System (GAMS®)

O minimizes the annual energy services bill (or carbon
emissions, or multiple objectives, or ...) of providing
services on a microgrid level (typically buildings with
250-2000 kW peak)

O produces technology neutral pure optimal results with
highly variable run times

O used for more than 5 years by Berkeley Lab and under
license by researchers in the US, Germany, Spain,
Belgium, Japan, and Australia

O potentially commercialized (software as a service model)

Environmental Energy Technologies DiviSiOn ws 29




(1) Cost Objective Function
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OF CALIFO
&VS% 1

A 4 <4

(&)  Available Equipment

A Y/
. CM-1 | fuel |
d ISCI'ete 00 cell
capacity (kW) 100 | 200
sprint capacity 125 only integer
installed costs ($/kW) 2400 | 5005 = inetallations
with heat recovery ($/kW) 3000 | 5200
variable maintenance ($/kWh) 0.02 | 0.029
efficiency (%, HHV) 26 35 )
lifetime (a) 20 | 10 | - continuous
. . lectrical -
fixed unavoidable € thermal | flow | absorption | solar
storagg storage | battery chiller thermal PV
costs\ P (lead acid)
intercept
costs ($) 295 10000 0 20000 | 1000 1000
ity ($/
kW or $/ 193 100 o) 127 500 6675
kWh) 220
lifetime (a) 5 17 10 15 15 20
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(=) Dmd. Measure Potential

EN @ ON
A$l kWreduced
M3, others
(active) max. cost
/ A of M2
o Uy 2V potontn
M2 reduced kW
M1, e.g. M1, e.g. ,
hours set point set point »~ e.g. change in
constraint < — (behavior) 1/ € heating set point is
Dé:’ v 7‘ Jan limited to a certain

also change in heating set temperature
point is limited to night hours

Years of World-Class

Science
1931-2000
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{&7). Zero Net Energy Bldgs.

O ZNEB constraint: purchased energy = sold energy
O energy must be in common units (heat equivalent)
O footprint constraint: the possible space for PV and solar
thermal adoption must be restricted
O multiple possible minimization objectives:
® energy or energy bill
® carbon emissions
® combination or other
O consideration of demand response measures:
©® load shifting measures represented by storage
©® load reduction measures represented by abstract
low, mid, and high measures
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Floor- peak annual annual
space load | electricity NG Fs, Fs,

(000 m2) | (MW) (GWh) (TI) base | peak

nursing [ 32 | 0.96 | 5.8 20 | 0.5 0.1

home

school | 18 | 0.88| 1.5 | 2.6 |0.25| 0
data | 06 | 1.8 | 11.4 0 1 | 1

center

' Years of World-Class
Science
1931-2000
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) Detailed CM Results

cases

chosen equipment
CM-100 + CHP (kW)
switch size (kW)
abs. chiller (kW.e)
solar therm (kW.t)
elect. storage (kWh)
therm. stor. (kWh)

electricity (k$/a)

NG (k$/a)

on-site DG (k$/a)
Total cost (k$/a)
electricity (GWh/a)
NG (GWh/a)

C emissions (t/a)

CM val. ($/kW*a)

% cost savings (k$/a)

nursing home school data center
opt opt opt
utility | invest | CM |ultility| invest | CM | utility |invest| CM
300 300 0 0 0 1600
na 260 na 9.7 na 1788
na 48 48 na 139 136 na 141 316
134 134 65 65 0 0
0 0 0 47 0 0
0 0 0 0 0 0
results: costs, energy consumption, emissions, and savings

758 429 429 264 246 2422|1478 1459 871
206 359 359| 24 26 26| 18 9.7 322
na 138 135| na 7.44 254\ na 4.0 249
964 926 924| 288 280 280| 1480 1473 1443
5.8 3.2 32 15 1.5 1.5|{11.42 114 8.44
5.7 10.0 10.0f 0.7 08 0.8 00 023 914
1088 945 945| 360 358 358| 1599 1606 1634
na na <=25| na na <=25| na na <=125
na 39 41| na 287 283 na 047 250
na 131 13.1| na 058 052/ na -05 -20

% C savings (tC/a)

* no subsidies considered in optimum invest case

' Years of World-Class
Science
1931-2006

Environmental Energy Technologies DiviSion s 35




(A

Thank yout!

http://www.youtube.com/watch?v=3XuCJBvq6Sk
http://der.Ibl.gov
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